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The nonlinear capillary instability of a liquid jet. 
Part 1. Theory 
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Nonlinear capillary instability of an axisymmetric infinite liquid column is investi- 
gated with an initial velocity disturbance consisting of a fundamental and one 
harmonic component. A third-order solution is developed using the method of 
strained co-ordinates. For the fundamental disturbance alone, the solution shows that 
a cut-off zone of wavenumbers (k) exists such that the surface waves grow exponen- 
tially below the cut-off zone, linearly in the middle of the zone (near k = l),  and an 
oscillatory solution exists for wavenumbers above the boundary of the zone. For an 
input including both the fundamental and a harmonic, all wave components grow 
exponentially when the fundamental is below the cut-off zone. Using a Galilean 
transformation, the solution is applied to a progressive jet issuing from a nozzle. The 
jet breaks into drops interspersed with smaller (satellite) drops for k < 0.65; no 
satellites exist for k > 0.65. It is shown theoretically that the formation of satellites 
can be controlled by forcing the jet with a suitable harmonic added to the fundamental. 

~~~~ ~ ~~~~~~~~~~ 

1. Introduction 
The linearized theory for the breakup of an inviscid liquid column with surface 

tension was provided by Rayleigh (1945). He showed that (i) the capillary jet is stable 
for all purely non-axisymmetric disturbances and (ii) the jet is stable or unstable to 
axisymmetric disturbances, depending on whether the wavelength is less or greater 
than the circumference of the undisturbed cylinder. He also showed that the unstable 
waves grow exponentially (eQt) and gave the dispersion relation 

where v is the coefficient of surface tension, p the density, ro the jet radius, I, is the 
modified Bessel function of the first kind and k is the wavenumber. It is quite re- 
markable that the linear theory predicts the jet breakup time reasonably well for 
monochromatic initial disturbances, even though i t  fails to describe the jet profile 
near breakup. In  a number of applications, however, the actual profile a t  breakup 
and the relation of this profile to the nature of an applied disturbance are of crucial 
importance. 

0022-1 120/80/4362-8180 $02.00 0 1980 Cambridge University Press 
9-4 



258 K .  C. Chaudhary and L. G .  Redekopp 

Donnelly & Glaberson (1966) showed experimentally that the main drops are 
interspersed with smaller drops (satellites), which could not be accounted for by 
linear theory. Figure (plate 1)  shows that the satellites can form in several different 
ways depending on the nature of the applied initial disturbance. 

Using the method of strained co-ordinates, Yuen (1968) developed a solution for 
an inriscid jet in the form of an infinite series and carried out the solution up to 
third order for a monochromatic initial displacement of the free surface. Though not 
mentioned specifically, Tuen’s theory predicts the existence of satellites for all 
n-avenumbers which Goedde & Yuen ( 1970) discussed in their experimental results. 
Subsequently, Nayfeh (1970) applied the method of multiple scales to the same 
problem that Yuen treated and obtained two second-order expansions, one valid for 
wavenumbers below and above the cut-off and the other for wavenumbers near the 
cut-off. Kayfeh and Tuen both predicted that the cut-off wavenumber is amplitude 
dependent. According to the linear theory, the cut-off wavenumber is always one. Yuen 
gal-e the cut-off wavenumber k, = I + 9e2/16, while Nayfeh gave the cut-off wave- 
number k, = 1 + 3e2/4, where E is the non-dimensional wave amplitude. Lafrance 
(1O75), following an analysis similar to Yuen’s, developed a third-order solution. Up 
to the second order, his solution is the same as Yuen’s, but at third order he assumed 
a form of the solution which is devoid of secular terms. However, in carrying out the 
analytical details, we find that the assumed third-order solution does not satisfy the 
boundary conditions to the same order. 

Rutland & Jameson ( 197 1 ), following Yuen’s analysis, performed experiments; 
they compared the jet profiles obtained experimentally with those predicted by 
Yuen’s theory and found good agreement. Their experiments showed the existence 
of satellites with long to moderate wavelengths (k = 0.075 to k = 0.683). 

In  most liquid jet applications, it  is necessary to electrically charge each drop and 
to achieve a varying amount of deflexion of the individually charged drops. Satellites, 
being usually smalI in size, hare different deflexion sensitivity than the main drops. 
In  general, it  would be most desirable to eliminate the appearance of satellites entirely. 
The only way the presence of satellites may not be harmful is when a complete wave- 
length of liquid separates from the main stream as a single unit and then, even if 
satellites separate out, they later merge with the same parent drop (see figure 1) .  

This paper is the first in a series of three papers motivated by the need for eliminating 
or at  least achieving a favourable configuration of satellites in a liquid jet. With 
present theories and experiments, the presence of the satellites has been found to be 
a dominant feature so long as a monochromic initial perturbation is applied to the jet. 
It was thought, therefore, that applying a non-monochromatic (a fundamental and 
one or more harmonics) disturbance may give the desired breakup shape of the liquid 
jet. 

In all the previous theoretical work, the applied disturbance is assumed to be in 
the form of an amplitude distortion applied to the surface of the liquid column. 
However, most of the practical devices used to excite the disturbance in a jet do not 
create such an amplitude distortion of the outer surface of the liquid column. Rather, 
one induces a transverse velocity dist,urbance in the liquid column at the nozzle exit. 
Therefore, in the present analysis, we consider an initial-value problem in which the 
applied disturbance is in the form of an initial velocity field (of periodic nature, along 
the length of the column), and the initial surface profile is taken to be undisturbed. 
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(C) I 
FIGURE 1. Typical ways of the satellite formation. (a)  The satellite merging with the main drop 
following i t ;  one wavelength of the fluid does not detach as one unit. (6) The satellite merging 
with the main drop leading it ; one wavelength of the fluid does not detach as one unit. ( c )  One 
wavelength of the fluid detaches as one unit and the satellite merges with the parent drop, hence 
a desirable configuration. 

2. Mathematical formulation and analysis 
A long cylindrical column of an inviscid fluid is assumed to be initially at  rest in a 

vacuum. The column has a uniform radius ro and the effect of any external field, 
including gravity, is neglected. The free surface of this column of fluid is subjected to 
a small normal velocity field which is axisymmetric, but periodic along the axis of the 
column (i.e. in the z direction). All variables are made dimensionless with respect to 
the characteristic length ro and the characteristic time to = (pri/cr)*, where p is the 
fluid density and (T the coefficient of surface tension. Using cylindrical polar co- 
ordinates, the dimensionless velocity potential $(r ,  2, t )  and the dimensionless surface 
distortion q(z ,  t )  are specified by the equations 

VZ+=O, O < r <  1+q,  (2) 

9, = ?It+927;1, on = I + %  (3) 

The initial conditions are 

q(z , t  = 0) = 0, 



260 I(. C.  Chaudhary and L. G. Redekqp 

where w, is a characteristic scaling frequency, say the frequency determined from the 
linear dispersion relation 

k,, is the wavenumber and e and 8, are the amplitudes of the fundamental and the nth 
harmonic inputs. We assume that e and 6, are of comparable order, but both are small 
compared to the unit radius of the jet column. This permits a solution by perturbation 
methods and one for which the amplitude 8, and phase 8, relative to the fundamental, 
can be adjusted to define ‘optimal ’ experimental configurations. Incidentally, with 
no initial amplitude distortion, the conservation of mass condition (i.e. the mean 
location of the interface) is much easier to apply. 

To construct the solution to the problem posed above, we express 4 and 11 in para- 
meter expansions of the form 

where 8 = 6,/e is the ratio of the initial inputs of the nth harmonic and the funda- 
mental. Throughout the analysis we assume that 6 is an order one parameter so that 
the fundamental and the harmonic are of (nearly) comparable amplitude initially. 
We require that these expansions are uniformly valid in the sense that 

where Tl is infinite for stable oscillations of the interface and is related to the breakup 
time for amplified disturbances. As shown later, the time is comparable to the 
breakup time in a number of cases which we have considered. This is an important 
result which suggests that the following analysis should have some practical value in 
identifying the kind of jet forcing leading to ‘acceptable’ performance. To ensure 
condition (lo), we also introduce the strained co-ordinates 

and then choose the straining functions v, and k,,, to eliminate any secular terms 
arising in the expansion. In  general, the straining functions depend on the independent 
variables also, but to the order considered here, they depend only on the parameters 
e , 8  and k, in the initial condition. Finally, to make the problem tractable, we expand 
the derivatives of q5 appearing in the boundary conditions (3) and (4) in a Taylor 
series about r = 1 and then apply the conditions at r = 1 instead of at the unknown 
interface location r = 1 + 9. 
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2.1. The linear problem 
The first-order problem is given by 

(a&+r--1aT+afg)$4l= 0 

subject to the boundary conditions 

q1.7 = $1, t* 

$1,7 = Ill + Ill, gg 

at r = 1 and subject to the initial conditions 

I lAS,  0) = 0, 

st7(S, 0 )  = w,[cos kC+ Gcos ( n K +  S)]. 

k = k,/(  1 + Ekl + Gk, + . . .). 

(14) 

The wavenumber k in the strained co-ordinate system is related to k, through (1 1 b): 

(15 )  

The solution to this order is similar to Rayleigh's result for the two independent 
inputs 

and 

where 

and 

I $1 = wo rq cos (kc)  cosh ("17) +a*) cos (nkc+ 6) cosh (wn7) nk 

cos (nkc + 6)], sinh ( 0 1 7 )  sinh (w,7) 
cos (kc)  + 

"n 
Ill = "0 [ "1 

mk 

a m  
w ; = -  (1-m2k2), m = l ,2 ,n .  

Depending on the value of k, in the initial condition, both solutions can be either 
amplified or neutral (oscillatory), or the fundamental can be amplified and the 
harmonic can be neutral. The nonlinear interactions can give other combinations and 
even extend the range of amplified wavenumbers. The results have been carried to 
third order where the fundamental and harmonic terms are regenerated by nonlinear 
interactions. 

The first-order solution shows that, for k < 1, w1 is real and surface waves grow 
exponentially; for k > 1, w1 is pure imaginary and the surface waves oscillate. In a 
real fluid when k > 1, the waves will be damped because of the effect of the viscosity. 

2.2. The second-order problem 

The analysis is lengthy and tedious beyond the linear solution, so only skeletal results 
will be presented here. Detailed analytical expressions are given by Chaudhary (1 977). 
The interface displacement a t  second order must be of the form 

72 = ~ , , ( ~ ) ~ o s ( ~ k ~ ) + B ~ ~ ( ~ ) c o s [ ~ ( n k g + ~ ) ] + B ~ ~ ( ~ ) ~ ~ ~ [ ( n -  I ) k c + O ]  

+ B2&) cos [ (n + 1) kc+ 81 + B&) cos (kc)  + cos (nkc) + B&). (20) 
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Solving for #,, which contains similar terms depending on 6, and substituting into the 
second-order boundary conditions, one finds that both k, and u1 should be zero to 
eliminate any secular terms. Also, the initial conditions require that both B,, and B,, 
be identically zero. The form of the remaining coefficients Bzi(i = 0,1, ..., 4) are 
given in appendix A. 

The second-order solution shows that there are four different wave components. 
Two of these represent twice the input frequencies (fundamental and nth harmonic) 
and the other two represent the interaction of the fundamental and the injected nth 
harmonic. Depending on the value of k and n, some or all of them can lie in the range 
where they show growing or oscillatory behaviour. There are several interesting 
features. For example if n = 3, the first interaction term is 

cos[(n-I)k~+O] = cos(2kg+O), 

which shows that in addition to cos 2k5, there is another second harmonic component, 
but at a different phase. Combining the two, BZ1(7) cos 2kg+ B23(7) cos (2k5+ 0) ,  shows 
that the phase of the second harmonic can be time dependent. Similarly, for n = 2 
there will be a fundamental component at a different phase than the input, showing 
that the phase of the combined fundamental can be time dependent. This time 
dependence of the phase of various wave components can provide control of the 
satellites. B,, is purely a time-dependent, term in the second-order solution, and comes 
from volume conservation to the second order. 

2.3. The third-order problem 

At this order, the interface displacement must contain the following contributions: 

&(z, t )  = B31(7) cos (k5) + B3,(7) cos (nkC+ 8) + B33(7) cos (3k5) 
+B34(7)~~~[3(nk5+8)]+B35(7)~~~[(n-2)k5+8]+B3S(7) cos[(n+2)kg+O] 

+B3,(7)cos[(2n- 1 )k5+28]+B38(7 )~~~[ (2n+  1)k5+28]. (21) 

After solving for q$3 and substituting into the third-order boundary conditions, in- 
homogeneous, second-order, ordinary differential equations for the B3i are obtained. 
The equations for B31 and B,, involve secular terms which can be eliminated by 
appropriately choosing the straining terms vz and k,. The algebraic details are very 
lengthy and not essential to the discussion which follows. Hence, we present the form 
of these coefficients in appendix B. 

The third-order solution has eight different wave components. Four of them 
represent the interaction of individual inputs with their own harmonics, and the other 
four are the mutual interactions. Two important features are noted here. 

(i) The cos (kc) and cos (nk[+ 8) terms show that there is a feedback to the original 
inputs at this order. 

(ii) Interaction components cos [(n - 2) k[+ 81 and cos [(2n - I )  k5+ 201 can be of 
the same wavelength as the fundamental or some of the harmonics produced by the 
fundamental. Therefore, the fundamental or some of the harmonics exhibit a time- 
dependent phase. 

When examining different BZi’s and B3i’s in both the second- and third-order 
solutions, we see that, even if the wavenumber for a particular wave component is 
beyond the cut-off, it can show a growth rate due to the interaction with lower-order 
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components. This means that, if the fundamental input has a growing solution, d l  the 
harmonic components will have some growth associated with them, irrespective of 
whether their own wavenumber is below the cut-off. I n  particular, it is interesting to 
note that, if n is high enough such that nk is beyond the cut-off, even then the included 
nth harmonic has some growth rate associated with it provided that the fundamental 
h a  a growing solution. This is due to the feedback of nth harmonic component from 
the third-order solution. Furthermore, all the harmonics (2n, 3n, etc.) of the included 
nth harmonic will have some growth associated with them due to interaction with the 
fundamental. If the wavenumber of a particular harmonic is beyond the cut-off, its 
growth is sustained only by direct feeding of the energy by the lower harmonics or the 
fundamental. 

3. Cut-off wavenumber 
The cut-off wavenumber and the solution near it are examined for the funda- 

mental input only (i.e. 8 = 0). This also gives the range of wavenumbers in which 
the solution is expected to be valid. Wavenumbers in the physical and the strained 
coordinate systems are related by 

k = ko/(  1 + e2k,). (22) 

Selecting the first choice of k, [equation (B 6)] and noting that w, is just a positive 
quantity given by (7), we obtain 

( 1 - k 2 ) ( k - k o )  =-- k ( l - k i ) [ .  
l 6 ~ ~ ~ ( k , ) ~  I O 

Examining this, the following relations are noted: 

(i) when Ic, = 1, k = 1; 

(ii) when k, < 1 ,  

(iii) when k, > 1, 

k, < k < 1 ;  

1 < k < k,. 

The other two choices of k ,  give exactly the same relations between k and k,. Since the 
third-order solution obtained grows exponentially for k < 1 and is oscillatory for 
k > 1, the cut-off wavenumber is k = 1 = k,. 

To examine the behaviour in the cut-off region, we must choose w, as a fixed constant 
instead of using the linear dispersion result (7) so that the disturbance amplitude does 
not vanish at k = 1 .  Now (w,E) is just the magnitude of the initial velocity disturbance 
independent of k, and (23) becomes 

( 1 - k 2 ) (  ( k - k , )  = 9 Q ' ( k ) ( w o e ) 2 .  
16 al(k0) 

The right-hand side is always greater than zero. Examining the equation we find the 
following : 

(i) when k ,  = 1, no real solution for k exists; 
when k, is such that the real solution for k exists, and 

(ii) when k, < 1, k, < k < 1; 

(iii) when k, > 1, 1 < k < k,. 
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FIQURE 2. Three zones of solution for finite initial input. 

\ Typical ex penmenial range 

0 

The last two relations are the same as before except that, for finite initial input, real 
k does not exist in the neighbourhood of k, = 1 ,  implying that the solution developed 
can not be applied in that neighbourhood. To find the range of k, where the above 
solution does not apply for a given (o,~), the extreme values of k, are found from (27) 
such that k is real. Treating k as a parametric variable, the extremum of k, and the 
corresponding value of (woe) are given in parametric form: 

(28) 
k{2kal(k) + ( 1  - k2) [ 1 - a:(k)]}  

[a , (k)]  ( l / k  + k) + ( 1  - k2) [ I -  4 ( k ) ]  ’ k, = 

When k is less than one, (28)  gives the maximum value of k, and, when k is greater than 
one, it gives the minimum value of k,. Equation (29)  gives the corresponding value 

Figure 2 shows the zones of k, for finite initial input (woe) ,  where the solution 
developed will apply together with the cut-off zone. In the cut-off zone, special cafe 
must be taken in interpreting the solution recorded in $2. 

of loo&. 

3.1. The solution near k, = 1 

To first order and for finite initial input, the solution is written 

where w, is just a constant and w1 is given by 

“1 =-kO(l- k W I W 0 ) .  
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Note that when k, + 1, w1 + 0 and 

This shows that near k, = 1 there is a linear growth instead of exponential growth. 
The linear growth a t  k, = 1 is one of the essentially different features of the initial 
velocity problem in comparison with the initial amplitude problem. In the case of an 
initial amplitude problem as shown by Yuen (1968), the first-order solution is 
stationary at  k, = 1. The result for an initial velocity input can be explained by con- 
sidering the first-order solution only. In  an initial amplitude problem, the surface is 
deformed and the liquid column is at rest everywhere initially. Since there is no 
velocity and if the initial deformation has such a curvature that the inside pressure is 
in balance with the surface tension forces, there need not be any subsequent motion of 
the fluid, resulting in a stationary solution. However, when an initial velocity is 
applied to a liquid column of uniform radius, the interface begins to move with a 
displacement which is linear in time, even though the surface tension forces are in 
balance with the pressure initially. 

We can expect that the linearly growing solution at k, = 1 will apply in a small band 
of wavenumbers in the cut-off zone around k, = 1. It is interesting to note from 
figure 2 that, if k, is slightly less than one for very small initial input, the growth rate 
is exponential, but as the magnitude of the initial disturbance is increased, for the 
same wavenumber, the growth rate will tend to become linear in time. Similarly, for 
k, slightly greater than one and for small initial input, the surface just oscillates and 
the column does not break into discrete drops. As the initial input increases, the 
disturbance grows linearly in time and the column will break into discrete drops. 

For a constant initial disturbance (woe), if the wavenumber is increased from small 
values to k, > 1, we observe from figure 2 that the solution form changes from one 
exhibiting exponential growth to one with linear growth and then to one with neutral 
oscillatory motion. This shows that there is no sharp cut-off wavenumber for the 
initial velocity input. This is in contra& to the sharp cut-off wavenumber given by 
Yuen (1968) and Nayfeh (1970) for the initial amplitude input. However, we choose 
to refer to the line AB in figure 2 as the cut-off wavenumber. This line is given by 
equations (28) and (29) and can be approximated to 

kcut-,,ff = 1 + 1.0665(0,~). (32) 

4. Theory of satellite control with harmonic input 
In  this section we show theroretically how the input harmonic in the initial condition 

may effect the formation of satellites. Most frequently, only one satellite is observed 
whose formation is primarily due to the second-harmonic component arising through 
the nonlinearity in the time evolution of the motion. The following discussion is 
addressed to this case. 

We observe from the solution that one second-harmonic component always comes 
from the fundamental input in second order. Another second-harmonic component 
can enter in either of two ways: 

(i) the input harmonic itself may be a second harmonic; or, 
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3. Theoretical jet profile with fundamental input only, observed at different instances. 
k ,  = 04312, 6 = 0.01, 6 = 0, n = 3, 0 = 0, non-dimensional frequency = 0.694. 

Je t  
number 

1 
2 
3 
4 
5 
6 

Time 
(break) 
19.2939 
19.3948 
19.6398 
19.8991 
19.4524 
19.7262 

(ii) the interaction of the input harmonic with the fundamental may give a second- 
harmonic Component. For example, with the third-harmonic input (n = 3) the second- 
order solution [equation (20)] gives an interaction term B,, cos (2k5+ 0).  

Consider first the case with third-harmonic input whereby two second-harmonic 
terms appear in the second-order solution [equation (20) ] .  They can be combined to 

give B,, cos 2k5+ B,, cos (2ky+ e)  = B, cos (2ky+ 81, (33) 

where Be@, e)  = + B,, cos e)2 + (B,, sin 8)2]3, (34) 

B23 sin 8 
B2, + B2, cos 8' 8(~ ,6 ) )  = tan-1 (35) 

&(7,0) and g(7,e)  are the time-dependent magnitude and phase (in relation to the 
fundament,al) of the composite second harmonic. It should be noted that, if the 
fundamental has a growing solution (k, < l) ,  both B,, and B,, will be growing terms 
and so mill t'he magnitude B2. Except then sine = 0 and/or B23 = 0, the composite 
second-harmonic will always have a time-dependent phase in relation to the funda- 
mental. This shows that 0 can be selected appropriately to make 8 increasing or 
decreasing with t,ime. In  the case when there is only one satellite and assuming it is 
primarily governed by the second-harmonic component, the above analysis shows that 
the formation of the satellite can be controlled by changing the harmonic input 
(8, and 0). 
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6 

5 

Jet 
number 

1 
2 
3 
4 
5 
6 

Time 
(break) 
23.4150 
23.5447 
23.8040 
23.5158 
23.7752 
24.0490 

A rough comparison can be made on the effectiveness of either second- or third- 
harmonic input in controlling the satellites. When the initial input includes the second 
harmonic, the controlling term will come from the first and the third-order solutions 
[i.e. B,, in (21)]. If k, is such that 2k, is in the non-growing range or has a very small 
growth rate, the controlling term will be small in magnitude even though one part of 
it is coming from the first-order solution. On the other hand, when the initial input 
includes the third harmonic, the controlling term comes from the second-order solution 
and has a growing component in it (because it is an interaction term with the funda- 
mental). For large values of time (T ) ,  the magnitude of this second-order interaction 
term may become larger than the first-order (non-growing) second-harmonic term 
showing that, in some range of k,, third-harmonic input may be more effective than 
second-harmonic input. 

5. Numerical computation for a progressive jet 
In  case of a jet issuing from a nozzle, the solution described above does not apply 

directly. The initial disturbance in such a progressive jet can be applied either up- 
stream from the nozzle or a short distance after the nozzle. In  an actual jet, the velocity 
profile is not exactly uniform. However, substantial growth of the surface waves takes 
place on the portion of the jet where the velocity profile is nearly uniform. A uniform 
mean velocity is assumed across the section of the jet at the point of application of the 
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)----, e-. ===---==-- ==----i17-?-~- 

& 4 -  

2 3 -  

e 
E 

4.4 w - 
2 

1 .  

Jet 
number 

1 
2 
3 
4 
5 
6 

-- 

n - 
-------OJ 

I 1 I I I I I 1 I I 1 I 

Time 
(break) 
15.1 441 
15.1441 
15.1 729 
15.3746 
15.8646 
16.1239 

initial disturbance. Distance down stream from this point can be related to time 
through the mean jet velocity, To apply the result of an infinite liquid column to a 
progressive jet, the following co-ordinate transformation is used. If ( r , z , t )  is the 
co-ordinate system for an infinite column, and ( r ,  x, T) is the co-ordinate system for 
a progressive jet, the transformation relating the two systems is z = x-V,T and 
t = z/V,, where V, is the (mean) velocity of the undisturbed jet. By selecting T, the 
instantaneous profiles of the jet surface are calculated from the point of application of 
the disturbances (z = 0) to the point where the jet breaks into drops (7 = - 1). 

Figures 3, 4 and 5 show computed jet profiles for a fundamental input alone for 
moderate, low and high wavenumbers. The profiles are plotted for six different 
instances. For moderate wavenumbers (k, = 0.431, figure 3) we find sequentially a 
large and a small (satellite) drop detached from the jet showing one satellite, while 
for short wavenumbers (k, = 0.31, figure 4) the satellite is a long filament with a neck 
in between showing the possibility that it may subdivide in two satellites further 
downstream. For large wavenumbers (k, = 0.65, figure 5) only a single drop separated 
out with a very thin ligament attached to it. Since the solution developed here cannot 
be applied beyond the breakup point, it  cannot predict whether the thin ligament will 
coalesce with the drop or separate out as a small satellite. 

To determine the limitations of the analysis, we examine how far downstream these 
results are valid in the sense that relation (10) is satisified. Figures 6, 7 and 8 show 
magnitudes of the fundamental, second and third harmonics for the same initial 
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Time 

FIGURE 6 

Break-ofi 
time 
Break-ofi 
time 

0 5 10 1s 20 
Time 

FIGURE 7 

FIQIJRE 6. Magnitudes of the fundamental, second and third harmonics for the fundamental 
input only, for k, = 0.4321 and B = 0.01. 

FIQURE 7. Magnitudes of the fundamental, second and third harmonics for the fundamental 
input only for k, = 0.31 and 8 = 0.01. 

0 5 10 15 20 
Time 

FIGURE 8. Magnitudes of the fundamental, second and third harmonics for the 
fundamental input only for ko = 0.65 and e = 0.01. 
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6 7 8 9 10 11 12 13 14. 15 '16 17 

FIQURE 9. Theoretical jet profile with the third harmonic input. k,, = 0.4312, E = 0.00306, 
n = 3, 6 = 90, non dimensional frequency = 0.694. 

Jet Time 
number 6 (break) 

1 0.0 23.6743 
2 0.0500 23.5879 
3 0~1000 23.3285 
4 0.1400 22.5792 
5 0.1800 21.8300 
6 0.2200 21.2536 
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FIUURE 10. Theoretical jet profile with third harmonic input. k,, = 0.4312, E = 041946, n = 3, 
6 = 90, non-dimensional frequency = 0.694. 

Jet 
number 

1 
2 
3 
4 
5 
6 

Time 
6 (break) 

0.0 16.8156 
0.0500 16-81 38 
0~1000 16.3833 
0.1400 16,1527 
0.1800 15.9222 
0.2200 15.4611 
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input as in the jets of figures 3,4 and 6 respectively. We observe (figure 7) that for small 
wavenumbers case (k, = 0.31) the magnitudes of the harmonics do not exceed that 
of the fundamental until 91 % of the break-off time. For ko = 0.431 (figure 6) the 
results are valid up to 97 yo of the break-off time and for larger wavenumbers (ko = 0.65, 
figure 8) the harmonics never exceed the fundamental. Several more computer runs 
were made and it was found that for a wavenumber about 0.51 or large the magnitude 
of the harmonics never exceeded that of the fundamental. 

Figures 9 and 10 show computed jet profiles for the moderate wavenumber case 
with both fundamental and third-harmonic inputs. Six profiles are shown in these 
figures for different initial amplitudes of the harmonic inputs relative to the funda- 
mental. We observe that with sufficient harmonic input we can change the shape near 
the breakup point to the extent that satellites can be eliminated. 

The coefficients bzi, have the following definitions: 

b20l = - s c ~ e / 4 ) ,  
bzoz = - g ( ~ ~ e / W 3 ,  

b,, = - (b201+ bzo,), 



Appendix B 
Equations for B,, and B,, which involve secular terms in the third-order solution are 

8 3 1  - (L':B~, = X.,o,w,k(a, - 1/a1) sin11 ( W I T )  - P31(7) - k&(7)/a1, (B 1) 
* .  

B32- w:~B,, = k 2 w o ~ a n n k ( a ,  - l / an )  sinh ( ~ ~ 7 )  -P,,(T) -nkQ3, (7) /an,  ( B  2 )  

where PSj and Q31 in]-olve hyperbolic functions of wi7 (i = 1 , 2 ,  n ,  2n, n - 1 ,  n + 1) and 
are given by Chaudhary (1977). The particular solution for the sinh (w17)  term in the 
equation for B,, will be of the form 7 sinh ( 0 ~ 7 ) .  Similarly, the solution of B,, will have 
a term 7 sinh (w,7) .  These secular ternis are suppressed by choosing the straining terms 
k, and i t ,  such that their coefficients become zero. Solving for k2 and u2 yields the 
expressions 

k2 = (a:G,-W2,g,)/(a~G,-W~gl), (B 3) 

--- a' a' [ ~ @ a ,  - 3) + 3(k2 - 6 - 3k4)] 
32 af 

W' Wf  62 +-- [2nka,w2,+a31-ka,)+n2k2(3k2- 1 ) + 6 )  
8 W; 



0; 62 
80; +- (k2+ 2 - ka,), 

P j 2 1  = 4"0[2"3221+ 4 " 3 2 ( 1 -  2nka,)3 (a,%,- 1 )  

+ )WOs("q + 2 - 2n2k2) w 2 2 ,  - b22l) + 4"0&4 + 2) (2bzoo - bzo2) 

--{[":+2":+2+(n- 1)k'I b231+2~q~~(b232+b242) " 0  

4 4  

+ [":+ 2 4 - ( 1  +n)I-C2]b241+S~~~:(1--ka,)+~"~"q(1-ka,))  

3 3  
-- a "O [o;(nka, - 3)  + 3(n2k2 - 6 - 3n4k4)] 

3 2 4 ,  

aw "2 
+-'A' (2kalw; + u:( 1 - nka,) + k2(3nZh2- 1 )  + 61 

+ &J0@231+ wib232 + & J ; S [ ~  + (n - 1 )  k a J )  ( 1  - anan-,) 

8 w; 

+ $w0(b241 + " i b 2 4 2  + &@[l- (n + 1) ka,]) ( 1  + a,a,+J, 

P;21 = two[ - Wa1- %-I) b232 + n w ,  + a,+,) b2421 

WO -- 4 4  [ ( l  -nka?a-l) b231+ ( l  -nkan,+l)  b2411 

w; s -- {[I - (n- 1 )  ka,](1 -nka,-,) + [ I  - (n+ 1)  ka,J(1 -nkan,+l)) 

+ a"owb221(nk~z, - 1 )  + (b221- 2b22o) ( 1  + nka,)I 

+ & O W 2 0 2  + 2b20o) ( 1  -nkan,) 

8 4  

"; a3  OJ: s + - [n2k2( 1 - 4a, a2,) + nk(a, + 2a2,) + 41 + - (n2k2 + 2 - nka,). 
32": 8 4  

Examinat,ion of these terms reveals that both v2 and k, are finite for all values of k ,  
including the linear cut-off wavenumber k = 1 ,  except when the harmonic input (i.e. 
6) vanishes, whereupon G2 is singular. However, when there is no harmonic input, all 
the nkc  terms and its interactions are absent leaving only a single equation [the 
equation for B3,(7)] to determine both vz and k2. Following an argument similar to that 
used by Yuen (1968), v2 is made unique by requiring it to be finite for all values of k .  
However, there are three possible choices for k2 which accomplish this and the appro- 
priate one may require consideration of higher-order terms in the expansion. 
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When there is no harmonic input, the only equation giving rise to secular growth is 
(B 1) .  Choosing the coefficient vg to eliminate this secularity we obtain 

v, = @2k(a1- 1 / ~ 1 )  + &( ~ / o J ? )  [2wfb211+ )w:( 1 - 2kaJJ (1 - 2ka2 + k / a i )  

- *(hll+ 2hlO) (1 + ka1) + w 2 1 1 -  2bZlO) (2 + k/%) 

-&(U&'W:) k/a1[(30 + 9k4 - 3k2) + 64k,kaw?/w;J. 

- & ( o J ~ / w % )  (8  - 6 h 1 +  9k/a,)  

(B 6) 

At k = 1 both w, and wo are zero. All the factors in v2 remain finite except w;/& 
which is singular. To make v2 finite a t  k = 1 the value of k ,  is adjusted so that the term 
in the last square bracket has 

(i) a factor of w? in the numerator, or 
(ii) its value is zero. 

This allows three possible choices for k ,  as shown below. 

(i) k, = - &&Ji/OJ!); 
this reduces the last term in v, to -&(30- 9k2) (w;/w:), 

(ii) k2 = -&27 + 9k2) (u;/oJ;); (B 7) 

this reduces the last term in v8 to - (15 /32)  (w$/w;) .  

(iii) 
3 

k2 = - - ( 1 0 + 3 k 4 - E 2 ) ( ~ $ / ~ q ) ;  64k2 

this reduces the last term in v2 to zero. 
The remaining terms in the third-order solution given in (21) are very lengthy and 

the interested reader is referred to Chaudhary (1977) for specific forms for all the 
coefficient functions BSi(7), i = 1 to 8. They have been used in the numerical results 
presented in 3 5, but are not essential to an understanding of the principal results 
concerning satellite control. 
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